We extend BFT systems with secrecy: an adversary has to compromise more than one third of the replicas to break secrecy (as opposed to just one).


Byzantine fault tolerant state machine replication (SMR) provides powerful integrity guarantees, but fails to provide any privacy guarantee whatsoever. A natural way to add such privacy guarantees is to secret-share state instead of fully replicating it. Such a com- bination would enable simple solutions to difficult problems, such as a fair exchange or a distributed certification authority. However, incorporating secret shared state into traditional Byzantine fault tolerant (BFT) SMR protocols presents unique challenges. BFT protocols often use a network model that has some degree of asynchrony, making verifiable secret sharing (VSS) unsuitable. However, full asynchronous VSS (AVSS) is unnecessary as well since the BFT algorithm provides a broadcast channel. We first present the VSS with share recovery problem, which is the subproblem of AVSS required to incorporate secret shared state into a BFT engine. Then, we provide the first VSS with share recovery solution, KZG-VSSR, in which a failure-free sharing incurs only a constant number of cryptographic operations per replica. Finally, we show how to efficiently integrate any instantiation of VSSR into a BFT replication protocol while incurring only constant overhead. Instantiating VSSR with prior AVSS protocols would require a quadratic communication cost for a single shared value and incur a linear overhead when incorporated into BFT replication. We demonstrate our end-to-end solution via a a private key-value store built using BFT replication and two instantiations of VSSR, KZG-VSSR and Ped-VSSR, and present its evaluation.



November, 2019


Related projects






Computer and Communication Security (CCS)