We present TritonSort, a highly efficient, scalable sorting system. It is designed to process large datasets, and has been evaluated against as much as 100 TB of input data spread across 832 disks in 52 nodes at a rate of 0.916 TB/min. When evaluated against the annual Indy GraySort sorting benchmark, TritonSort is 60% better in absolute performance and has over six times the per-node efficiency of the previous record holder. In this paper, we describe the hardware and software architecture necessary to operate TritonSort at this level of efficiency. Through careful management of system resources to ensure cross-resource balance, we are able to sort data at approximately 80% of the disks’ aggregate sequential write speed. We believe the work holds a number of lessons for balanced system design and for scale-out architectures in general. While many interesting systems are able to scale linearly with additional servers, per-server performance can lag behind per-server capacity by more than an order of magnitude. Bridging the gap between high scalability and high performance would enable either significantly cheaper systems that are able to do the same work or provide the ability to address significantly larger problem sets with the same infrastructure.


March, 2011


  • Alexander Rasmussen
  • George Porter
  • Michael Conley
  • Harsha V Madhyastha
  • Radhika Niranjan Mysore
  • Alexander Pucher
  • Amin Vahdat