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Abstract. We present new protocols for Byzantine agreement in the synchronous and authenticated
setting, tolerating the optimal number of f faults among n = 2f + 1 parties. Our protocols achieve an
expected O(1) round complexity and an expected O(n?) communication complexity. The exact round
complexity in expectation is 10 for a static adversary and 16 for a strongly rushing adaptive adversary.
For comparison, previous protocols in the same setting require expected 29 rounds and expected Q(n4)
communication. We also give a lower bound showing that expected £2(n?) communication is necessary
against a strongly rushing adaptive adversary.

1 Introduction

Byzantine consensus [26] is a fundamental problem in distributed computing and cryptography. It has been
used to build fault tolerant distributed systems [2,7,24,38,40], secure multi-party computation [4,19], and
more recently cryptocurrencies [1,23,29, 34, 35]. Byzantine consensus considers the problem of reaching
agreement among a group of n parties, among which up to f can have Byzantine faults and deviate from the
protocol arbitrarily. There exist different formulations for the Byzantine consensus problem.* Two classic
formulations are Byzantine broadcast and Byzantine agreement [26,36]. In Byzantine broadcast, there is a
designated sender who tries to broadcast a value; In Byzantine agreement, every party holds an initial input
value. Both problems require all honest parties to eventually commit on the same value. To rule out trivial
solutions, both problems have additional validity requirements.

Byzantine agreement and Byzantine broadcast have been studied under various combinations of assump-
tions, most notably timing assumptions — synchrony, asynchrony or partial synchrony, and setup assumptions —
cryptography and public-key infrastructure (PKI). It is now well understood that these assumptions drastically
affect the fault tolerance bounds. In particular, Byzantine broadcast and Byzantine agreement both require
f < n/3 under partial synchrony or asynchrony. But under synchrony with digital signatures and PKI,
Byzantine agreement can be solved with f < n/2 while Byzantine broadcast can be solved with f < n — 1.

In this paper, we consider the synchronous and authenticated (i.e., assuming digital signatures and
PKI) setting. The efficiency metrics we consider are (1) round complexity, i.e., the number of rounds of
communication before the protocol terminates, and (2) communication complexity, i.e., the amount of
information exchanged between parties during the protocol. For convenience, we measure communication
complexity using the number of signatures exchanged between parties. Assuming each signature has A bits,
multiplying our communication complexity by A yields the asymptotic communication complexity in bits.

In the synchronous and authenticated setting, Dolev and Strong gave a deterministic Byzantine broadcast
protocol for f < n — 1 [11]. Their protocol achieves f + 1 round complexity and O(n?f) communication
complexity. The f+1 round complexity matches the lower bound for deterministic protocols [11,14]. To further
improve round complexity, randomized protocols have been introduced [3,13,37] and culminated in the work
of Katz and Koo [21], which solves Byzantine broadcast for f < n/2 using expected O(n®) communication
and expected O(1) rounds, and to be precise, expected 29 rounds. Recently, Micali and Vaikuntanathan gave
a randomized protocol that solves Byzantine broadcast for f < n/2 with 1 — 27" probability using O(k)

4 We use the word “consensus” as a collective term for these variants; other papers have different conventions.



rounds and O(n3k) communication [31]. Their protocol does not support early termination, so all parties
always have to run for O(k) rounds and incur the round/communication complexity above. Furthermore, all
of the above protocols solve Byzantine broadcast. To solve Byzantine agreement, the standard technique is to
run n instances of Byzantine broadcast in parallel and output the most frequently broadcast value [36]. This
adds an additional ©(n) factor to communication complexity.

Thus, to the best of our knowledge, existing Byzantine agreement protocols in the synchronous and au-
thenticated setting with optimal resilience all require £2(n*) communication complexity. For round complexity,
the best-known protocol (Katz-Koo [21]) requires expected 29 rounds. We improve communication complexity
to O(n?) and round complexity to 16. To the best of our knowledge, our protocol is the first to simultaneously
achieve (i) O(1) rounds, (ii) expected O(n?) communication, and (iii) optimal fault tolerance of n = 2f + 1
in the synchronous and authenticated setting. In fact, we do not know of any existing protocol that achieves
both (ii) and (iii).

Our protocols use threshold signatures [6,39] to reduce communication complexity and a random leader
election subroutine to reduce round complexity. The random leader election subroutine can be constructed
using verifiable random functions (VRF) [29,30], which can be instantiated from RSA [30] or bilinear maps [16].
Alternatively, we can use threshold coin-tossing schemes [6,28]. Both approaches require a single round and
O(n?) communication. We achieve the following result.

Theorem 1. Assuming verifiable random functions, synchronous authenticated Byzantine agreement can be
solved for f < n/2 with

— expected 10 rounds and expected O(n?) communication against a static adversary,
— expected 16 rounds and expected O(n?) communication against a strongly rushing adaptive adversary.

It is worth noting that our protocols work even in the presence of a very powerful adversary, which we call
a strongly rushing adaptive adversary. The adversary can adaptively decide which f parties to corrupt and
when to corrupt them. And by “strongly rushing”, we mean that if the adversary decides to corrupt a party
h after observing messages sent from h to any other party in round r, it can remove h’s round-r messages
from the network before they reach other honest parties. In comparison, a standard rushing adversary can
decide its own round-r messages after learning honest parties’ round-r messages, but if it corrupts h in round
r, it cannot “take back” or alter h’s round-r messages to other parties. The Dolev-Strong, Katz-Koo, and
Micali-Vaikuntanathan protocols all work against such a strongly rushing adaptive adversary.

The O(1) expected round complexity is clearly asymptotically optimal. A natural question is whether or
not the quadratic communication complexity can be further improved. Dolev and Reischuk [10] were the
first to investigate this question. They showed that 2(f?) messages are necessary for deterministic protocols.
When f = O(n), it translates to a £2(n?) lower bound. King-Saia [22] and Chan-Pass-Shi [8] circumvent this
lower bound and achieve sub-quadratic communication by allowing imperfect security, i.e., by introducing
failure probability. In this work, building on Dolev and Reischuk [10], we show that even after allowing
a constant failure probability, £2(n?) expected messages are necessary against a strongly rushing adaptive
adversary. Specifically, we show the following lower bound:

Theorem 2. If a protocol solves Byzantine broadcast with %+e probability against a strongly rushing adaptive
adversary, then in expectation, honest parties need to send at least (ef/2)* messages.

Note that even though the lower bound is stated for Byzantine broadcast, it applies to Byzantine agreement
as well, because Byzantine broadcast can be achieved by having the sender broadcast its value and then
running one instance of Byzantine agreement. Not surprisingly, the sub-quadratic solutions by King-Saia [22]
and Chan-Pass-Shi [8] only work against a standard rushing adaptive adversary but not a strongly rushing
adaptive one.

We remark that, besides failure probability and security against a strongly rushing adversary, both
King-Saia and Chan-Pass-Shi protocols also sacrifice optimal resilience (cf. Section 1.1 and Table 1). An
interesting open question is whether Byzantine broadcast/agreement can be solved with sub-quadratic expected
communication complexity while preserving optimal resilience. We leave it to future work.



Table 1: Comparison with closely related works. Here, x is a security parameter and € is a positive
constant. We assume all protocols have access to ideal digital signatures. Dolev-Strong, Katz-Koo, and
Micali-Vaikuntanathan solve Byzantine broadcast; if transformed into Byzantine agreement protocols with
standard techniques, their communication complexity increase by a factor of n.

Protocol Exp. Comm. Exp. Round Resilience Failure Adversarial
Complexity Complexity Probability Model
Dolev-Strong [11] O(n?f) f+1 f<n-1 0 strongly rushing adaptive
Katz-Koo [21] O(n?) 29 f<n/2 0 strongly rushing adaptive
Micali-Vaikuntanathan [31] O(n®k) O(k) f<n/2 27" strongly rushing adaptive
King-Saia [22] n'® . polylog(n) polylog(n) |f < (% —e)n  1/poly(n) rushing adaptive
Chan-Pass-Shi [§] n - poly log(x) o(1) f<(3—en negl(r) rushing adaptive
This work (upper bound) O(n?) 16 f<n/2 0 strongly rushing adaptive
This work (lower bound) > (ef/2)? N/A any f 1—¢ strongly rushing adaptive

1.1 Related Work

Byzantine agreement and broadcast were first introduced by Lamport, Shostak and Pease [26,36]. They
presented protocols and fault tolerance bounds for two settings (both synchronous). Without cryptographic
assumptions (the unauthenticated setting), Byzantine broadcast and agreement can be solved if and only
if f < n/3. Assuming digital signatures (the authenticated setting), Byzantine broadcast can be solved if
f <n —1 and Byzantine agreement can be solved if and only if f < n/2. The protocols from [26,36] had
exponential message complexities. Fully polynomial protocols were later shown for both the authenticated
(f < n/2) [11] and the unauthenticated (f < n/3) [18] settings. Both protocols require f + 1 rounds of
communication, which matches the lower bound on round complexity for deterministic protocols [11,14].
To circumvent the f + 1 round lower bound, a line of work explored the use of randomization [3,37] which
eventually led to expected constant-round protocols for both the authenticated (f < n/2) [21] and the
unauthenticated (f < n/3) [13] settings. In the asynchronous setting, the FLP impossibility [15] rules out
any deterministic solution. Some works use randomization [3,5,6] or partial synchrony [12] to circumvent the
impossibility.

We have already compared with closely related works by Dolev-Strong, Katz-Koo, and Micali-Vaikuntanathan.
Table 1 summarizes them and compares with our results. For completeness, we mention that the numbers
in Table 1 have considered adding threshold signatures to those works. For Dolev-Strong [11], there is no
obvious way to utilize threshold signatures because each round uses a different threshold: a valid message in
round &k must be signed by k replicas. Katz-Koo [21] and Micali-Vaikuntanathan [31] both invoke n instances
of gradecasts in parallel. Threshold signatures can improve one gradecast instance to O(n?), so n parallel
gradecast instances result in O(n3) communication complexity.

The King-Saia protocol [22] solves synchronous Byzantine agreement for f < (% — ¢)n with 1/polyn

failure probability and uses n'-> - polylog(n) communication. Recently, Chan, Pass and Shi [8] have shown
a protocol that solves binary Byzantine agreement for f < (% — €)n with negl(x) failure probability in
expected O(1) rounds and n - poly log(x) communication [8]. Intuitively, both protocols save communication
by down-sampling the population into a smaller committee and running a Byzantine agreement protocol
within the committee. Their techniques are orthogonal and complementary to our work since they still need a
protocol for the committee. Interestingly, the protocol run by the committee in Chan-Pass-Shi is inspired by

the protocol described in this work.



1.2 Technical Overview

We first describe our core protocol, which ensures agreement (safety)® and termination as required by
Byzantine broadcast/agreement, but provides a weak notion of validity. Specifically, it achieves

— Termination: all honest parties eventually commit,

— Agreement /safety: all honest parties commit on the same value, and

— Validity: if all honest parties start with certificates for the same value v, and no Byzantine party starts
with a certificate for a contradictory value, then all honest parties commit on v.

In Section 5 we will describe how to obtain these certificates to solve Byzantine broadcast or Byzantine
agreement.

The core protocol runs in iterations. In each iteration, a unique leader is elected. Each new leader picks up
the state left by previous leaders and proposes a value in its iteration. Parties then cast votes on the leader’s
value v. Ideally, if the leader is honest, all honest parties commit v upon receiving f + 1 votes for v at the end
of that iteration. A Byzantine leader can easily waste its iteration by not proposing. But it can also perform
the following more subtle attacks: (1) send contradicting proposals to different honest parties, or (2) send a
proposal to some but not all honest parties. We must ensure these Byzantine behaviors do not violate safety.

The need for equivocation checks. To ensure safety in the first attack, parties engage in an all-to-all
round of communication to forward the leader’s proposal to each other for an equivocation check. If a party
detects leader equivocation, i.e., sees two conflicting signed proposals from the leader, it does not commit
even if it receives f + 1 votes.

The need for a notify round. Using the second attack, a Byzantine leader can make some, but not all,
honest parties commit on a value v. If the other honest parties do not know that v has been committed, they
may commit v’ # v in a subsequent iteration. Therefore, whenever an honest party h commits on a value
v, h needs to notify all other honest parties of its commit. h can do this by broadcasting the f + 1 votes it
received. When another party h' receives such a notification, it “accepts” the value v. If a party has accepted
v and receives a proposal v/ # v in a later iteration, it will not vote for v/ unless it is shown a proof that
voting for v’ is safe. The details can be found in Section 3.

Safety, termination, and validity. Safety is preserved because when an honest party commits, (1) no
other party can commit a different value in the same iteration (due to equivocation checks), and (2) no other
value can gather enough votes in subsequent iterations (due to notify by the honest party). Validity follows
from a similar argument: if all honest parties start the protocol with the same certified (i.e., accepted) value
v and Byzantine parties do not have a different certified value, only v can gather enough votes. Termination
is achieved when some honest party h receives f + 1 notify messages. At this point, h sends these f + 1
notifications to all other parties and terminates. The f + 1 notifications h sends will ensure termination of all
other parties in the next round. If an honest leader emerges, all parties terminate in its iteration.

Round complexity and communication complexity. Since there are f+1 honest out of 2f+1 parties, by
electing a random leader in every iteration, the protocol terminates in 2 iterations in expectation. Depending
on the adversarial model, each iteration ranges from 4 to 7 rounds. The communication bottleneck happens
at rounds that require all-to-all exchanges. In these rounds, each message is either a single signature or f + 1
signatures on the same message. The latter can be reduced to O(1) using threshold signatures. Thus, the
protocol runs in expected O(1) rounds and uses expected O(n?) communication.

Paxos, PBFT, and our protocol. Abstractly, this core protocol resembles the synod algorithm in Paxos [25]
but is adapted to the synchronous and Byzantine setting. The main idea of the synod algorithm is to ensure
quorum intersection [25] at one honest party. The core idea of Paxos is to form a quorum of size f + 1 before
committing a value. With n = 2f + 1, two quorums always intersect at one party, which is honest in Paxos.
This honest party in the intersection will force a future leader to respect the committed value. In order to
tolerate f Byzantine faults, PBFT [7] uses quorums of size 2f + 1 out of n = 3f + 1, so that two quorums

5 We will refer to the agreement requirement as “safety” for the rest of the paper.



intersect at f 4+ 1 parties, among which one is guaranteed to be honest. Similar to PBFT, we also need to
ensure quorum intersection at f + 1 parties. But this requires new techniques with n = 2f + 1 parties in total.
On the one hand, an intersection of size f + 1 seems to require quorums of size 1.5f + 1. (An subsequent
work called Thunderella [35] uses quorums of size 1.5f + 1 to improve the optimistic case.) On the other
hand, a quorum size larger than f 4+ 1 (the number of honest parties) seems to require participation from
Byzantine parties and thus loses liveness. As described in the core protocol, our synchronous notify round
forms a post-commit quorum of size 2f + 1, which intersects with any pre-commit quorum of size f + 1 at
f + 1 parties. This satisfies the requirement of one honest party in the intersection. Moreover, since parties in
the post-commit quorum only receive messages, liveness is not affected.

Achieving Byzantine broadcast and Byzantine agreement. The core protocol already ensures safety
and termination, so we only need some technique to boost its weaker validity to what Byzantine broad-
cast /agreement require. Our protocol achieves this using a single round of all-to-all communication before
invoking the protocol. This allows us to avoid the standard transformation of composing n parallel Byzantine
broadcasts to achieve Byzantine agreement. As a result, our Byzantine agreement protocol has the same
asymptotic round/communication complexity as the core protocol.

A case for synchronous protocols. Synchronous protocols are often considered an unrealistic assumption
in practice. This may be because (i) an adversary can attack the network to violate the synchrony assumption,
(ii) the protocol can not progress at the actual speed of the network, or (iii) synchronous protocols require
parties to run in lock-step rounds. In Section 7, we explain that the first two concerns are shared by Bitcoin.
The success of Bitcoin shows that a protocol with a conservative message delay bound, though slow, can still
be safe and useful in practice. For the last concern, we give a clock synchronization protocol to bootstrap
lock-step synchrony from bounded message delay.

2 Model

We assume synchrony. If an honest party i sends a message to another honest party j at the beginning of
a round, the message is guaranteed to reach by the end of that round. We describe the protocol assuming
lock-step execution, i.e., parties enter and exit each round simultaneously. Later in Section 7, we will present
a clock synchronization protocol to bootstrap lock-step execution from bounded message delay.

We assume digital signatures and trusted setup. In the trusted setup phase, a trusted dealer generates
public/private key pairs for digital signatures and other cryptographic primitives for each party, and certifies
each party’s public keys. We use (z), to denote a message x signed by party 4, i.e., (z), = (x,0) where o is a
signature of message x produced by party ¢ using its private signing key. For efficiency, it is customary to
sign the hash digest of a message. A message can be signed by multiple parties (or the same party) in layers,
Le., ((z);); = (®,0:); = (w,04,0;) where o; is a signature of z and o} is a signature of z || o; (|| denotes
concatenation). When the context is clear, we omit the signer and simply write (x) or ((x)).

We require a random leader election subroutine. As mentioned, this subroutine can be instantiated using
random verifiable functions [29] or threshold coin-tossing [6]. It may also be left to higher level protocols. For
example, a cryptocurrency may elect leaders based on proof of work.

We assume a strongly rushing adaptive adversary. After the trusted setup phase, the adversary can
adaptively decide which f parties to corrupt and when to corrupt each of them as the protocol executes. Note,
however, that the adversary is not mobile: it cannot un-corrupt a Byzantine party to restore its corruption
budget. The adversary is also strongly rushing. In each round, the adversary observes any party ¢’s message
to any other party j. If the adversary decides to corrupt i at this point, it controls which other honest parties
(if any) ¢ sends messages to and what messages ¢ sends them in that round.

3 A Synchronous Byzantine Synod Protocol

Our core protocol is a synchronous Byzantine synod protocol with n = 2f + 1 parties. The goal of the core
synod protocol is to guarantee that all honest parties eventually commit (termination) on the same value



(agreement). In addition, it achieves the following notion of validity: if (1) all honest parties start with the
same value and have a certificate for this value, and (2) the adversary does not start with a certificate for a
contradictory value, then all honest parties commit on this value. In Section 5, we show how to obtain these
certificates using a single pre-round to achieve Byzantine broadcast and Byzantine agreement.

For ease of exposition, we will temporarily assume a static adversary in Section 3.1 while presenting the
core protocol. A static adversary has to decide which parties to corrupt after the trusted setup phase and
before the protocol starts. We will also temporarily assume a trusted random beacon that selects a random
leader L for each iteration k£ and informs all parties of its selection.

Each iteration consists of 4 rounds. The first three rounds are conceptually similar to Paxos and PBFT:
(1) the leader learns the states of the system, (2) the leader proposes a value, and (3) parties vote on the
value. If a party receives f + 1 votes for the same value and does not detect leader equivocation, it commits
on that value. We then add another round: (4) if a party commits, it notifies all other parties about the
commit; upon receiving a notification, other parties accept the committed value and will vouch for that value
to future leaders. We now describe the protocol in detail.

3.1 Detailed Protocol

When a leader proposes a value v in iteration k, we say the proposal has rank k and write them as a tuple
(v, k). The first iteration has k = 1. Each party ¢ internally maintains states accepted, = (v, k;,C;) across
iterations to record its accepted proposal. Initially, each party i initializes accepted; := (L, 0, L). If party ¢
later accepts (v, k), it sets accepted, := (v, k,C) such that C certifies that v is legally accepted in iteration k.
C consists of f+ 1 commit requests for proposal (v, k) (see the protocol for details). We also say C certifies, or
is a certificate for, (v, k). Proposals are ranked by the iteration number in which they are made. Namely, (v, k)
is ranked higher than, lower than, or equal to (v/, k") if k > &/, k < k' and k = k’, respectively. Certificates
are ranked by the proposals they certify. When we say a party “broadcasts” a message, we mean it sends the
message to all parties including itself.

Round 1 (status) Each party ¢ sends a (k,status, v;, k;, C;);
value. We henceforth write Ly as L for simplicity.
At the end of this round, if party ¢ reports the highest certificate to L (¢ could be L itself), L sets
accepted; = (vp,kr,Cr) := (vi, ki, C;). If no party reports a certificate, L chooses vy, freely and sets
kr :=0and Cp, := 1.

Round 2 (propose) L broadcasts a signed proposal ((k, propose,vr.); ,kr,Cr) ;-
At the end of this round, party ¢ sets vy_,; := vy, if the certificate it receives in the above leader proposal is
no lower than what ¢ reported to the leader, i.e., if ky, > k;. Otherwise (leader is faulty), it sets vy_,; := L.

Round 3 (commit) If vy _,; # L, then party i forwards the proposal (k, propose, vr,_;); to all other parties
and broadcasts a (k,commit, vr_,;), request.
At the end of this round, if party i is forwarded a properly signed proposal (k, propose,v’); in which
v’ # vy, it does not commit in this iteration (leader has equivocated). Else, if party i receives f + 1
(k, commit,v>j requests in all of which v = vp_,;, it commits on v and sets its internal state C; to be
these f + 1 commit requests concatenated. In other words, party i commits if and only if it receives f + 1
matching commit requests and does not detect leader equivocation.

Round 4 (notify) If party ¢ has committed on v at the end of the previous round, it sends a notification
((notify, v), ,C;), to every other party.
At the end of this round, if party ¢ receives a ({notify, v)

message to Lj to report its current accepted

j b
(vi, ki, Ci) == (v, k,C). If party ¢ receives multiple valid notify messages with different values (how this can
happen is explained at the end of Section 3.2), it can accept an arbitrary one. Lastly, party ¢ increments
the iteration counter k and enters the next iteration.

C)j message, it accepts v by setting accepted; =

Early and non-simultaneous termination. At any point during the protocol, if a party gathers notification
headers (excluding certificates) (notify, v) from f + 1 distinct parties, it sends these f + 1 notification headers
to all other parties and terminates. This ensures that when the first honest party terminates, all other honest
parties receive f + 1 notification headers and terminate in the next round.
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Fig.1: An example iteration of the core protocol. In this example, f =2, n =2f 4+ 1 =5, parties 3 and 4 are
Byzantine. 1. (status) Each party sends its current states to L = 3. 2. (propose) No party has committed or
accepted any value, so L can propose any value of its choice. L equivocates and sends one proposal to party 4
(shown by dashed red arrow) and a different proposal to honest parties. 3. (commit) Honest parties forward
L’s proposal and send commit requests to all parties. Party 4 only sends to parties {3,4,5}. Parties 1 and 2
receive f + 1 commit requests for the blue value and do not detect equivocation, so they commit. Party 5
detects leader equivocation and does not commit despite also receiving f + 1 commit requests for the blue
value. 4. (notify) Parties 1 and 2 notify all other parties. On receiving a valid notification, party 5 accepts the
blue value. 5. (status) The parties send status messages to the new leader L' = 1 for iteration k + 1.

3.2 Safety, Termination, and Validity

In this section, we prove that the core protocol in Section 3.1 provides safety, termination and a weak notion
of validity.

Safety. We first give some intuition to aid understanding. The scenario to consider for safety is when an
honest party h commits on a value v* in iteration k*. We first show that Byzantine parties cannot commit or
accept a value other than v* in iteration k*. Thus, all other honest parties accept v* at the end of iteration
k* upon receiving notify from the honest party h. Thus, a value other than v* cannot gather enough votes in
iteration k* + 1, and hence cannot be committed or accepted in iteration £* + 1, and hence cannot gather
enough votes in iteration k* + 2, and so on. Safety then holds by induction.

We now formalize the above intuition by proving the following lemma about certificates: once an honest
party commits, all certificates in that iteration and future iterations can only certify its committed value.

Lemma 1. Suppose party h is the first honest party to commit and it commits on v* in iteration k*. If a
certificate C for (v, k*) exists, then v = v*.



Proof. C must consist of f + 1 commit requests for v. At least one of these comes from an honest party (call
it h1). Thus, h; must have received a proposal for v from the leader, and must have forwarded the proposal
to all other parties. If v # v*, h would have detected leader equivocation, and would not have committed on

v* in this iteration. So we have v = v*.

Lemma 2. If at the start of iteration k, (1) every honest party i has a certificate for (v,k;), and (2) all
conflicting certificates are lower ranked, i.e, any certificate for (v', k") where v # v’ must have k' < k; for all
honest i, then the above two conditions will hold at the end of iteration k.

Proof. Suppose for contradiction that some party (honest or Byzantine) acquires a higher certificate than
what it had previously for v’ # v. Then it must receive from one honest party (call it h) a (k, commit,v’),
request in iteration k. Note that h has a certificate for (v, ky) at the start of iteration k. In order for h to send
a commit request for v’, the leader Ly must show a certificate for (v/, k') such that k&’ > kj,, which contradicts
condition (2).

A simple induction shows that the above two conditions, if true at the start of an iteration, will hold true
forever.

Theorem 3 (Safety). If two honest parties commit on v and v’ respectively, then v =v'.

Proof. Suppose party h is the first honest party to commit, and it commits on v* in iteration k*. After the
notify round of iteration k*, every honest party receives a certificate for (v*, k*) and accepts v*. Furthermore,
due to Lemma 1, there cannot be a certificate for (v, k*) in iteration k* for v # v*. Thus, the two conditions
in Lemma 2 hold at the end of iteration k*. So no certificate for a value other than v* can be formed from
this point on. In order for an honest party to commit on v, there must be a certificate for (v, k) where k > k*.
Therefore, v = v*. Similarly, v" = v*, and we have v = v’.

Termination. We now show that an honest leader will guarantee all honest parties terminate by the end of
that iteration.

Theorem 4 (Termination). If the leader Ly, in iteration k is honest, then every honest party terminates
one round after iteration k (or earlier).

Proof. The honest leader Ly will send a proposal to all parties. It will propose a value reported by the highest
certificate it collects in the status round. This certificate will be no lower than any certificate held by honest
parties. Additionally, the unforgeability of digital signatures prevents Byzantine parties from falsely accusing
L of equivocating. Therefore, all honest parties will send commit requests for v, receive f + 1 commit requests
for v, commits on v, send notification headers for v, receive f + 1 notification headers for v (this is the end of
iteration k), and terminate in the next round. (It is possible that they receive f + 1 notification headers and
terminate at any earlier time.)

Validity. We now discuss the validity achieved by our core protocol. In the theorem, we assume the existence
of initial certificates for (v,0) that are input to our core protocol. These initial certificates will be provided by
higher-level protocols that invoke the core protocol (c.f. Section 5).

Theorem 5 (Validity). All honest parties will commit on v if (1) every honest party starts with an initial
certificate C certifying v, and (2) no Byzantine party has a certificate C' certifying v’ # v.

Proof. The proof is straightforward from Lemma 2 and Theorem 4. The input constraints satisfy the two
conditions for Lemma 2 with each k; = 0. Due to Lemma 2, for all subsequent iterations, only v can have
certificates and thus, only v can be committed. By Theorem 4, when an honest leader emerges, all honest
parties will commit on v.



Finally, we mention an interesting scenario that does not have to be explicitly addressed in the proofs.
Before any honest party commits, Byzantine parties may obtain certificates for multiple values in the same
iteration. In particular, the Byzantine leader proposes two values v and v’ to all the f Byzantine parties. (An
example with more than two values is similar.) Byzantine parties then exchange f commit requests for both
values among them. Additionally, the Byzantine leader proposes v and v’ to different honest parties. Now with
one more commit request for each value from honest parties, Byzantine parties can obtain certificates for both
v and v', and can make honest parties accept different values by showing them different certificates (notify
messages). However, this will not lead to a safety violation because no honest party would have committed in
this iteration: the leader has equivocated to honest parties, so all honest parties will detect equivocation from
forwarded proposals and thus refuse to commit. This scenario showcases the necessity of both the synchrony
assumption and the use of digital signatures for our protocol. Lacking either one, equivocation cannot be
reliably detected and any protocol will be subject to the f < n/3 bound. For completeness, we note that the
above scenario will not lead to a violation of the termination property, either. At the end of the iteration,
honest parties may accept either value. But in the next iteration, they can still vote for either value despite
having accepted the other, since the two values have the same rank.

4 Random Leader Election using Verifiable Random Function

4.1 Background on Verifiable Random Function (VRF)

A verifiable random function F is a pseudorandom function that provides a proof of its correct computation [30].
Given a secret key sk, one can evaluate F' on any input x and obtain a pseudorandom output y = Fyi ()
together with a proof 7. From 7 and the corresponding public key pk, anyone can verify that y is correctly
computed from x and sk, in which case Verpi(z,y,m) = 1. Additionally, a VRF needs to satisfy uniqueness:
there do not exist x,y1, ya2, 71, 72 such that y1 # yo but Verpe(x, y2,m) = Verpi(z, y2, m2) = 1. Hence, a VRF
is also called a unique signature. Efficient constructions for VRFs have been described in [9, 16].

4.2 Against a Static Adversary

At a high level, random leader election using VRF works as follows in our protocol. In each iteration, each
party i evaluates the VRF on the iteration number k. The VRF output y; = Fy, (k) serves as a secondary
rank of party 4’s proposal. Namely, proposals now have the form (v, k,y) where v is the proposed value, k is
the iteration number as before, and y is the candidate leader’s VRF output. Naturally, commit messages,
certificates, and notify messages now additionally include the proposer’s VRF output y as well. Proposals and
certificates are ranked by k first and then by y. Every party should act as a leader in the status round and
the propose round of each iteration to collect states and make a proposal. The corresponding VRF proofs are
then sent in a new elect round. The party with the largest VRF output is the real leader of that iteration.

The above idea works against a static adversary after the necessary modifications described in this
subsection. Achieving expected constant rounds against an adaptive adversary requires additional techniques,
which we present in Section 4.3.

In the static case, the elect round happens concurrently with the propose round. In the commit round,
each party forwards the highest ranked proposal. A party sends a commit request for the highest ranked
proposal it receives in each iteration (unless it has seen a certificate for an even higher proposal in previous
iterations). At the end of the commit round, a party commits a proposal (v, k,y) in iteration k, if (1) it
receives f + 1 matching commit requests (could be virtual) for the proposal, (2) it does not receive a higher
ranked or equally ranked proposal. Receiving a higher ranked proposal implies that the certified proposal is
not from real leader of the iteration; receiving an equally ranked proposal implies proposer equivocation. At
the end of the notify round, party ¢ accepts the highest proposal with a certificate.

If an honest party has the highest rank in an iteration, every honest party will receive its VRF rank and
will consider it the leader. Thus, termination holds without any change. However, if a Byzantine party has
the highest rank, it can selectively withhold its VRF rank from other parties. This may cause honest parties



to have different views on the identity of the leader. We now show such a misbehavior does not affect safety
or validity.

Lemma 3 (cf. Lemma 1). Suppose replica h is the first honest replica to commit and it commits on
(v*, k*,y*) in iteration k*. If a certificate C for (v,k*,y) exists, then either y < y* or v =v*.

Proof. Similar to the proof of Lemma 1, for such a cert C to exist, a honest replica h; must have sent a
commit request for (v, k*,y). Thus, h; must have received a proposal for (v, k*,y) and must have forwarded
it to all other replicas. If (v, k*, y) is higher ranked than (v*, k*,y*), or if they are equally ranked but v # v*,
then h would not have committed. Therefore, either y < y* or v = v*.

The statements and proofs of Lemma 2, Theorem 3 and Theorem 5 remain unchanged, once we augment
proposal ranks with VRF outputs. We do not repeat them.

4.3 Against an Adaptive and Strongly Rushing Adversary

The protocol presented so far does not achieve expected constant rounds against an adaptive adversary. The
adversary learns who the leader L, is after the elect round in iteration k. It can then immediately corrupt Ly
and prevent it from sending any proposal. This way, the adversary forces the protocol to run for f iterations.

A first modification towards adaptive security is to move the elect round after the propose round and
before the commit round. The hope is that, by the time Lj is corrupted, all honest parties have already
received their proposal. However, this idea alone is not sufficient. At the end of the elect round, after learning
the identity of Ly, the adversary corrupts Ly, signs an equivocating proposal using Ly’s secret key and
forwards it to all honest parties. Honest parties will detect equivocation from L; and will not commit in this
iteration. We are again forced to run the protocol for f iterations.

To this end, we need to add a step for each party to “prepare” its proposal before the leader is revealed.
Afterwards, only “prepared” proposals are considered in equivocation checking. The prepare step should
guarantee that, if a party h is honest throughout the prepare process but becomes corrupted afterwards, an
adversary cannot construct a “prepared” equivocating proposal on h’s behalf. We achieve the prepare step in
two rounds as follows.

Round P1 (prepare;) Each party ¢ broadcasts its proposal (v;, k), .
Round P2 (prepare,) If party j receives a proposal (v;, k), from party i in the previous round, party j signs
the proposal and sends (v;, k), back to party i.

We say a proposal (v;, k) is prepared if it carries f + 1 signatures from distinct parties. Each honest party will
be able to prepare its proposal. If party i is honest in the two prepare rounds and becomes corrupted only
afterwards, preparing a conflicting proposal on party i’s behalf requires forging at least one honest party’s
signature, which a computationally bounded adversary cannot do.

The core protocol against an adaptive and strongly rushing adversary now has 7 rounds: status, prepare,,
prepare,, propose, elect, commit, and notify. Proofs for safety and validity remain unchanged from the static
case. Proof of termination and round complexity analysis also hold once we observe that (1) there is a > 1/2
chance that each leader Ly is honest up to the point at which it is revealed, and (2) if Ly, is still honest by
the end of the propose round of iteration k, all honest parties will consider its proposal valid and terminate
one round after iteration k.

4.4 Round Complexity and Communication Complexity

The first honest leader will ensure termination. The random leader election subroutine ensures a (f +1)/(2f +
1) > 1/2 probability that each leader is honest, so the core protocol terminates in expected 2 iterations, plus
one extra round to forward f + 1 notify. Thus, if an iteration requires r rounds, our core protocol requires
2r 4+ 1 rounds to terminate in expectation. If the adversary is adaptive and strongly rushing, each iteration
requires r = 7 rounds. If the adversary is adaptive and normal rushing, the elect round can happen in parallel
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to propose, and each iteration has r = 6 rounds. If the adversary is static (rushing or otherwise), we do not
need the two prepare rounds, and the elect round can happen in parallel to either status or propose, giving
r = 4 rounds per iteration.

Next, we analyze the communication complexity. We will show that each of the 7 rounds consumes O(n?)
communication. So the core protocol requires expected O(n?) communication (whether the adversary is
adaptive or static, rushing or not). First of all, note that although a certificate consists of f 4 1 signatures,
its size can be reduced to a single signature using threshold signatures [6,20,27,39]. In the status round,
every party is reporting its currently accepted certificate to every other party (every party can potentially be
the leader since the leader identity has not been revealed). In prepare,, every party sends a signed proposal,
which is O(1) in size, to every other party. In prepare,, every party sends back a doubly signed proposal,
which is O(1) in size, to every other party. In the propose round, every party sends a proposal, which carries a
certificate, to every other party. The leader election subroutines from prior work require O(n?) communication.
In the commit round, every party sends an O(1)-sized commit message to every other party. In the notify
round, every party sends a notify message, which carries a certificate, to every other party. Lastly, before
termination, every party sends f 4+ 1 notification headers (notify, v), which can be reduced to a single threshold
signature, to every other party.

5 Byzantine Broadcast and Agreement

In this section, we describe how to use the core protocol to solve synchronous authenticated Byzantine
broadcast and agreement for the f < n/2 case. For both problems, we design a “pre-round” to let honest
parties obtain initial certificates and then invoke the core protocol.

Byzantine broadcast. In Byzantine broadcast, a designated sender tries to broadcast a value to n parties.
A solution needs to satisfy three requirements:

(termination) all honest parties eventually commit,
(agreement) all honest parties commit on the same value, and
(validity) if the sender is honest, then all honest parties commit on the value it broadcasts.

Let Ly be the designated sender. In the pre-round, Ls broadcasts a signed value (vy) 1. to every party.
Such a signed value by the sender is an initial certificate certifying (vs,0). We then invoke the core protocol.
Safety and termination are satisfied due to Theorems 3 and 4. If the designated sender is honest, each honest
party has a certificate for (vs,0) and no conflicting initial certificate can exist, satisfying the condition for
Theorem 5. Thus, validity is satisfied.

Byzantine agreement. In Byzantine agreement, every party holds an initial input value. A solution needs
to satisfy the same termination and agreement requirements as in Byzantine broadcast. There exist a few
different validity notions. We adopt a common one known as strong unanimity [12]:

(validity) if all honest parties hold the same input value v, then they all commit on v.

In the pre-round, every party ¢ broadcasts its value (v;),. f + 1 signatures from distinct parties for the
same value v form an initial certificate for (v,0). We then invoke the core protocol. Safety and termination
are satisfied due to Theorems 3 and 4. If all honest parties have the same input value, then they will have an
initial certificate for v and no conflicting initial certificate can exist, satisfying the condition for Theorem 5.
Thus, validity is satisfied.

The efficiency of the protocols is straightforward given the analysis of the core protocol. Both protocols
require one more round than the core protocol and the same O(n?) communication complexity as the core
protocol.
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6 Lower Bound on Expected Communication Against a Strongly Rushing
Adaptive Adversary

Our proof strategy builds on and extends the classic Dolev and Reischuk [10, Theorem 2] lower bound, which
shows that in every deterministic Byzantine broadcast protocol honest parties need to send at least 2(f?)
messages. We show that in every randomized protocol solving Byzantine broadcast with e error probability
against a strongly rushing adaptive adversary, honest parties need to send at least (ef/2)? messages.

The Dolev-Reischuk lower bound. We first explain the Dolev-Reischuk proof at a high level. Observe
that for a deterministic protocol, an execution is completely determined by the input (of the designated
sender) and the adversary’s strategy. Consider the following adversarial strategy. The adversary corrupts an
arbitrary set B of f/2 parties that does not include the designated sender. Let A denote the set of remaining
parties. All parties in B behave like honest parties, except that (i) they ignore the first f/2 messages sent to
them, and (ii) they do not send messages to each other. Call the above adversarial strategy Strat. Suppose
the honest designated sender sends 0 under Strat. For validity to hold, then all honest parties commit on 0.

If at most (f/2)? messages are sent to B in the above execution, then there exists a party p € B such
that p receives at most f/2 messages. Let S(p) denote the set of parties that send messages to p. Clearly,
|S(p)| < f/2. We define strategy Strat’ identically as Strat except that: (i) do not corrupt p, (ii) corrupt all
parties in S(p) (possibly including the designated sender) and prevent them from sending any messages to p
(but let S(p) behave honestly to other parties). Since |S(p)| < f/2, Strat’ corrupts at most f parties.

Observe that honest parties in A\S(p) receive identical messages from all other parties under Strat and
Strat’, so they cannot distinguish the two executions. Thus, A\S(p) would still commit on 0 under Strat’
However, p does not receive any message and has to commit on an arbitrary value. If this value is 1, safety is
violated. If p commits on 0 when receiving no messages, we can let the sender send v = 1 under Strat and
derive a safety violation under Strat’ following a symmetric argument.

Our lower bound. We now extend the above proof to randomized protocols. In a randomized protocol,
there are two sources of randomness that need to be considered carefully. On the one hand, honest parties can
use randomization to their advantage. On the other hand, an adaptive adversary can also leverage randomness.
Indeed our lower bound uses a randomized adversarial strategy. In addition, our lower bound crucially relies
on the adversary being strongly rushing — the adversary can observe that a message is sent by an honest
party h to any other party in a given round r, decide to adaptively corrupt h, and then remove messages sent
by h in round r. We prove the following theorem:

Theorem 6 (Theorem 2, restated). If a protocol solves Byzantine broadcast with %—&— € probability against
a strongly rushing adaptive adversary, then in expectation, honest parties collectively need to send at least
(ef/2)? messages.

Proof. We first define adversarial strategy Strat (same as Dolev-Reischuk):

1. Corrupt an arbitrary set B of f/2 parties. Let A denote the remaining parties.
2. Each party in B behaves like an honest party except that, it ignores the first f/2 messages sent to it, and
it does not send messages to other parties in B.

Suppose for contradiction that a protocol solves Byzantine broadcast with less than e probability of error
using less than (ef/2)? expected messages. For a protocol to have an expected message complexity of (ef/2)?,
honest parties collectively need to send fewer than that many messages in expectation regardless of the
adversary’s strategy. Let z be a random variable denoting the number of messages sent by honest parties to
B. We have E[z] < (ef/2)?. Let X be the event that z < e(f/2)2. By Markov’s inequality, Pr[z > 1E[z]] <.
Thus, Priz < e(f/2)%] > Pr[z < 1E[z]] > 1 —e.

Let Y be the event that among the first €(f/2)? messages, a party p picked uniformly at random by the
adversary receives at most f/2 messages. Observe that among the first e(f/2)? = €| B|(f/2) messages, there
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exist at most €| B| parties that receive more than f/2 of those. Since p has been picked uniformly at random
from B, Pr[Y] > 1 —e.

Pr(X NY] =Pr[X]+Pr[Y] - Pr[X UY]
>(1l—-e)+(1—-¢—1
=1-—2¢

Define adversarial strategy Strat’ identically to Strat except:

1. The adversary picks a party p € B uniformly at random. The adversary does not corrupt p.

2. Whenever some party s € A attempts to send a message to p in a round, if the adversary has not used up
its corruption quota f, it immediately corrupts s and removes the message sent by s to p in that round.
Once corrupted, s does not send p any messages but otherwise behaves correctly.

Observe that X N'Y denotes the event where the total number of messages sent by honest parties to B
is less than €(f/2)? and among those p has received at most f/2 messages. Let S(p) be the set of parties
that attempt to send p messages (some or all of these attempts are blocked). Thus, we have shown that,
Pr[S(p) < f/2] > 1 — 2e. This is the probability that the random party p picked by the adversary under Strat
receives < f/2 messages, which also means p receives no message at all under Strat’. In this case, honest
parties in A\S(p) receive identical messages under the two adversarial strategies while p needs to commit on
a value without receiving any message under Strat’.

Without loss of generality, suppose that when receiving no message p commits on 1 with at least 1/2
probability (otherwise, p commits on 0 with at least 1/2 probability that the proof follows from a symmetric
argument). Let the designated sender sends 0 under Strat. Conditioned on X N'Y, validity holds under Strat
if and only if safety is violated under Strat’. Thus, with at least %(1 —2€) = % — € probability, either validity
is violated under Strat or safety is violated under Strat’.

7 Clock Synchronization and the Case for Synchrony

Synchrony in distributed computing has long been considered an unrealistic assumption in practice. Almost
all practical consensus protocols and systems assume partial synchrony or asynchrony [7,25, 32]. However,
Bitcoin’s rise to fame provides an argument that synchrony is not just convenient theoretical simplification
but it can play a role in practice. In this subsection, we revisit the standard synchrony assumption and the
timing assumption implicitly in Bitcoin. We explain how the two relate to and differ from each other, and
re-evaluate the (im-)practicality of synchrony.

The synchrony assumption states that there is an upper bound A, known to all parties, on the time for
messages to be delivered. é If such a A bound does not exist, the system is said to be asynchronous. It is
well-known that under asynchrony, no deterministic protocol can solve consensus even against a single fail-stop
fault [15]. This impossibility result motivated the introduction of partial synchrony [12]. One formulation
of partial synchrony states that a A bound does exist but is unknown. To articulate how partial synchrony
differs from synchrony, it is helpful to consider a game between a protocol designer and an adversarial
environment [12]. Under synchrony, the environment specifies A first and the protocol designer needs to come
up with a protocol that is correct under this particular A. Under partial synchrony, the protocol designer
must supply a protocol first and the environment picks A after that; the protocol should remain correct no
matter what A is picked.

We can think of three main concerns as to why synchrony is impractical.

1. It is easy to attack the network and violate any A bound, so a synchronous protocol is unsafe.
5 In theory, the synchrony assumption has another crucial component that says there is an upper bound &, known to

all parties, on the rate at which one party’s clock runs faster than another party. But a large clock drift seems to be
less of a concern in practice, so we assume a known @ bound exists and omit discussing it here.
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2. A synchronous protocol must proceed at the speed of a conservatively chosen A bound, so it is very slow
and hence impractical.

3. A synchronous protocol requires all parties to run in synchronized rounds; it is impractical because
achieving this lock-step synchrony is too hard.

Next, we study what timing assumption is implicit in Bitcoin’s Nakamoto consensus protocol. First, it is
not hard to see that Nakamoto consensus will fail under asynchrony. Imagine that whenever an honest node
in Nakamoto consensus finds a proof-of-work solution, its messages are arbitrarily delayed due to asynchrony.
Then, it is as if the adversary controls 100% of the mining power and can create arbitrarily long forks.
Nakamoto consensus exhibits some unique and interesting properties under partial synchrony as analyzed by
Pass, Seeman, and shelat [33]7, building on Garay, Kiayias, and Leonardos [17]. Nakamoto consensus does not
have to know an exact message delay bound A. However, its fault tolerance is a function of A and a difficulty
parameter p. For a given p, its fault tolerance gradually deteriorates as A increases, and eventually drops
to 0 for very large A. Thus, the analysis of Pass, Seeman, and shelat [33] shows that Nakamoto consensus
cannot handle partial synchrony, either.

The gradual deterioration behavior does make the timing assumption of Nakamoto consensus slightly
weaker than standard synchrony. Typically, if the A bound is violated, a standard synchronous consensus
protocol will lose safety even without the presence of any fault. Whether we can design synchronous protocols
with gradual deterioration without using proof-of-work is an interesting open question.

However, it is unclear to what extent Bitcoin’s success is attributed to this gradual deterioration property.
In fact, Bitcoin shares the first two limitations of standard synchrony. Its designer guessed a conservative
bound, 10 minutes. Progress can only be made roughly every 10 minutes; if most messages take longer than
10 minutes to deliver, Bitcoin will be plagued by frequent forks and fail to achieve consensus.® We think
Bitcoin’s almost 10-year operation provides strong evidence that a synchronous protocol will be safe if a very
conservative A is picked, and that slow progress at a A speed can still provide great utility to users.

This leaves us with the third limitation — synchronous protocols will likely struggle in practice due to
the difficulty of lock-step execution. Note that lock-step execution is crucial in our protocol — if party ¢ enters
a round much earlier than party j, then i may end up finishing the round too soon without waiting for j’s
message to arrive. This could prevent i from detecting leader equivocation and result in a safety violation. To
this end, we provide a simple clock synchronization protocol to bootstrap lock-step execution from standard
synchrony. We hope our clock synchronization protocol together with the above discussion can justify the use
of synchronous protocols in some scenarios.

Clock Synchronization. Our clock synchronization will be executed at known time intervals. We call each
interval a “day”.

Round 0 (sync) When party 4’s clock reaches the beginning of day X, it sends a (sync, X), message to all
parties including itself.
Round 1 (new-day) The first time a party j receives f + 1 (sync, X) messages from distinct parties (either
as f + 1 separate sync messages or within a single new-day message), it
e sets its clock to the beginning of day X, and
e sends all other parties a new-day message, which is the concatenation of f + 1 (sync, X) messages
from distinct parties.

The above protocol refreshes honest parties’ clock difference to at most the message delay bound A at the
beginning of each day. The first honest party to start a new day will broadcast a new-day message, which
makes all other honest parties start the new day within A time. Obtaining a new-day message also means at

7 The paper called their model “asynchronous” but assumed a A message delay bound, putting it under the partially
synchronous model in conventional terminology.

8 Note that for both Nakamoto and conventional synchronous protocols, if a few parties violate the A bound, we can
classify them as being faulty (even if they have no ill intentions) and the protocol still functions correctly; if most
parties violate the bounds, however, the protocol will fail.
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least one honest party has sent a valid sync message, ensuring that roughly one day has indeed passed since
the previous day. We can then set the duration of each round to 2A + ¢ where ¢ is the maximum clock drift
between two honest parties in a “day”.

The clock synchronization protocol bootstrap lock-step synchrony from the message delay bound A and a

clock drift bound. Each sync message is triggered by a party’s own local clock, independent of when day X
would start for other parties.
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